If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+x^2=48
We move all terms to the left:
4x+x^2-(48)=0
a = 1; b = 4; c = -48;
Δ = b2-4ac
Δ = 42-4·1·(-48)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{13}}{2*1}=\frac{-4-4\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{13}}{2*1}=\frac{-4+4\sqrt{13}}{2} $
| 3.5+y=-1.2 | | 26=6-5n | | 2x-1=6x-3x-8 | | 20r=–12+7(4r−20) | | 9=(2x‐8) | | 7x—26=4x+1 | | n/6-4=-5 | | 3x+1/4=x+7/2 | | -5r-5=10 | | 7=1/8j+5 | | 4/5x+2/9=37/45 | | 4(2x-1)=3(x+2) | | -28=-4(3x-8) | | 2/3(k+5)=8 | | 6y-4y=-48 | | 1=x/9+3 | | 2/3(k=5)=8 | | 53-v=25 | | -5-(15w-1)=2(7w-16)-w | | X=45x+100 | | 2.5(x-11.9)=9 | | 5^3-v=25 | | 2=k/2-5 | | 5x+4=3x12.6 | | 3x-2(3x+20)=14 | | 4z+5(7z-3)=9(z-5) | | 350+x=1010 | | 4.4/(x)=1 | | x+86+69+x+45=180 | | z-1/5=15 | | 13/c=26/c | | 8y+4=4(2y+1) |